解答:证明:由u=u(x,y)=xv+yφ(v)+ψ(v),得
ux=v+xvx+yφ′(v)vx+ψ′(v)vx,
而x+yφ′(v)+ψ′(v)=0,
∴ux=v
∴uxx=vx,uxy=vy,
又uy=xvy+φ(v)+yφ′(v)vy+ψ′(v)vy=φ(v),
∴uyy=φ′(v)vy,uyx=φ′(v)vx;
于是uxx=vx,uyy=φ′(v)vy,uxy=vy,uyx=φ′(v)vx,
∴
?
?2u ?x2
?(
?2u ?y2
)2=vxφ′(v)vy?uxy?uyx=vxφ′(v)vy-vyφ′(v)vx=0.
?2u ?x?y