∫x^3/(1+x^2)dx=x²/2-1/2ln(1+x²)+c。c为积分常数。
解答过程如下:
∫x^3/(1+x^2)dx
=∫(x²+1-1)x/(1+x²)dx
=1/2∫(x²+1-1)/(1+x²)dx²
=1/2∫[1-1/(1+x²)]dx²
=x²/2-1/2ln(1+x²)+c
扩展资料:
分部积分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx
即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式
也可简写为:∫ v du = uv - ∫ u dv
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
如图所示:
你好!如图拆成项,分别凑微分计算。经济数学团队帮你解答,请及时采纳。谢谢!
Let x = tanθ and dx = sec²θ dθ
∫ dx/(x²+1)^(3/2)
= ∫ (sec²θ)/(tan²θ+1)^(3/2) dθ
= ∫ (sec²θ)/(sec²θ)^(3/2) dθ
= ∫ (sec²θ)/(sec³θ) dθ
= ∫ cosθ dθ
= sinθ + C
= x/√(1+x²) + C
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
∫(x³+1)/(x²+1)² dx
= ∫(1-x)/(x²+1)² dx + ∫x/(x²+1) dx
= J + (1/2)ln(x²+1)
令x=tany,dx=sec²y dy,siny=x/√(x²+1),cosy=1/√(x²+1)
J = ∫(1-tany)/sec⁴y * sec²y dy
= ∫(1-tany)cos²y dy
= ∫cos²y dy - ∫sinycosy dy
= (1/2)∫(1+cos2y) - (1/2)∫sin2y dy
= y/2 + 1/4*sin2y + 1/4*cos2y
= (1/2)arctanx + (1/2)*x/(x²+1) + 1/4*[2/(x²+1)-1]
= (1/2)arctanx + x/[2(x²+1)] + (1-x²)/[2(x²+1)]
原积分= (1/2)arctanx + x/[2(x²+1)] + (1-x²)/[2(x²+1)] + (1/2)ln(x²+1) + C
= (1/2)[(x+1)/(x²+1) + ln(x²+1) + arctanx] + C