假如你有一个表,
SQL> CREATE TABLE test_tab (
2 id INT,
3 name VARCHAR(10),
4 age INT,
5 val VARCHAR(10)
6 );
你的业务,有一个查询,是
SELECT * FROM test_tab WHERE name = 一个外部输入的数据
刚开始,数据不多的时候,执行效果还不错。
随着数据量的增加,这个查询,执行起来,越来越慢了。
然后在 name 上面 建立了索引
CREATE INDEX idx_test4_name ON test_tab (name );
这样, 可以加快前面那个查询的速度。
但是,某天,你执行了下面这个SQL, 发现速度又慢了
SELECT * FROM test_tab WHERE age = 25
为啥呢? 因为 age 字段上面,没有索引
索引只在 name 上面有
换句话说, 也就是 WHERE 里面的条件, 会自动判断,有没有 可用的索引,如果有, 该不该用。
多列索引,就是一个索引,包含了2个字段。
例如:
CREATE INDEX idx_test_name_age ON test_tab (name, age);
那么
SELECT * FROM test_tab
WHERE
name LIKE '张%'
AND age = 25
这样的查询,将能够使用上面的索引。
多列索引,还有一个可用的情况就是, 某些情况下,可能查询,只访问索引就足够了, 不需要再访问表了。例如:
SELECT
AVG( avg ) AS 平均年龄
FROM
test_tab
WHERE
name LIKE '张%'
这个时候, name 与 age 都包含在索引里面。 查询不需要去检索表中的数据。
语法:
CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name
[USING index_type]
ON tbl_name (index_col_name,...)
index_col_name:
col_name [(length)] [ASC | DESC]
例:
CREATE INDEX id_index USING BTREE ON t_test (id);
这样就创建了一个t_test表id字段的索引。
在满足语句需求的情况下,尽量少的访问资源是数据库设计的重要原则,这和执行的 SQL 有直接的关系,索引问题又是 SQL 问题中出现频率最高的,常见的索引问题包括:无索引(失效)、隐式转换。
1. SQL 执行流程看一个问题,在下面这个表 T 中,如果我要执行 select * from T where k between 3 and 5; 需要执行几次树的搜索操作,会扫描多少行?mysql> create table T ( -> ID int primary key, -> k int NOT NULL DEFAULT 0, -> s varchar(16) NOT NULL DEFAULT '', -> index k(k)) -> engine=InnoDB;mysql> insert into T values(100,1, 'aa'),(200,2,'bb'),\ (300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');
这分别是 ID 字段索引树、k 字段索引树。
这条 SQL 语句的执行流程:
1. 在 k 索引树上找到 k=3,获得 ID=3002. 回表到 ID 索引树查找 ID=300 的记录,对应 R33. 在 k 索引树找到下一个值 k=5,ID=5004. 再回到 ID 索引树找到对应 ID=500 的 R4
5. 在 k 索引树去下一个值 k=6,不符合条件,循环结束
这个过程读取了 k 索引树的三条记录,回表了两次。因为查询结果所需要的数据只在主键索引上有,所以必须得回表。所以,我们该如何通过优化索引,来避免回表呢?
2. 常见索引优化2.1 覆盖索引覆盖索引,换言之就是索引要覆盖我们的查询请求,无需回表。
如果执行的语句是 select ID from T wherek between 3 and 5;,这样的话因为 ID 的值在 k 索引树上,就不需要回表了。
覆盖索引可以减少树的搜索次数,显著提升查询性能,是常用的性能优化手段。
但是,维护索引是有代价的,所以在建立冗余索引来支持覆盖索引时要权衡利弊。
2.2 最左前缀原则
B+ 树的数据项是复合的数据结构,比如 (name,sex,age) 的时候,B+ 树是按照从左到右的顺序来建立搜索树的,当 (张三,F,26) 这样的数据来检索的时候,B+ 树会优先比较 name 来确定下一步的检索方向,如果 name 相同再依次比较 sex 和 age,最后得到检索的数据。
# 有这样一个表 P
mysql> create table P (id int primary key, name varchar(10) not null, sex varchar(1), age int, index tl(name,sex,age)) engine=IInnoDB;
mysql> insert into P values(1,'张三','F',26),(2,'张三','M',27),(3,'李四','F',28),(4,'乌兹','F',22),(5,'张三','M',21),(6,'王五','M',28);
# 下面的语句结果相同
mysql> select * from P where name='张三' and sex='F'; ## A1
mysql> select * from P where sex='F' and age=26; ## A2
# explain 看一下
mysql> explain select * from P where name='张三' and sex='F';
+----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+
| 1 | SIMPLE | P | NULL | ref | tl | tl | 38 | const,const | 1 | 100.00 | Using index |
+----+-------------+-------+------------+------+---------------+------+---------+-------------+------+----------+-------------+
mysql> explain select * from P where sex='F' and age=26;
+----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+
| 1 | SIMPLE | P | NULL | index | NULL | tl | 43 | NULL | 6 | 16.67 | Using where; Using index |
+----+-------------+-------+------------+-------+---------------+------+---------+------+------+----------+--------------------------+
2.3 索引下推
2.4 隐式类型转化
修改应用,将应用中传入的字符类型改为与表结构相同类型。
3.2 扫描行数
在 MySQL 中,有两种存储索引统计的方式,可以通过设置参数 innodb_stats_persistent 的值来选择:
on 表示统计信息会持久化存储。默认 N = 20,M = 10。
off 表示统计信息只存储在内存中。默认 N = 8,M = 16。
可以用 analyze table 来重新统计索引信息,进行修正。