数列关系式a(n+1)=√(2+an)数学归纳法假设递增数列即a(n+1)》ana1=√2n=2 a2=√(2+√2 ) a2>a1n=ka(k+1)>akn=k+1a(k+2)=√(2+a(k+1))>a(k+1)=√(2+ak)所以是递增数列a(n+1)=√(2+an)>an2+an>an²-1〈an〈2an〈2so单调有界数列这样当n无穷大时,an的极限=a(n+1)的极限=kk=√(2+k)k=2