已知sin(π/4-α)=3/5,且α∈(0,π/4),那么:
-α∈(-π/4,0),即有:π/4 - α∈(0,π/4)
所以:cos(π/4-α)=根号[1-sin²(π/4-α)]=根号(1- 9/25)=4/5
所以:sinα=sin[π/4 - (π/4-α)]
=sin(π/4)*cos(π/4-α)-cos(π/4)*sin(π/4-α)
=(根号2)/2 *(4/5 - 3/5)
=(根号2)/10
而cosα=根号(1- sin²α)=根号(1- 1/50)=7(根号2)/10
tanα=sinα/cosα=[(根号2)/10]÷[7(根号2)/10]=1/7
所以:tan(α+π/4)=[tanα+tan(π/4)]/[1 - tanα*tan(π/4)]
=(1/7 +1)/(1- 1/7)
=8/6
=4/3