旧的教材强调学生对概念的描述基础上理解,掌握、再运用。所以,旧的教材对每个概念都做了书面的描述。并且强调学生要记住。所以教师教学重点是讲解概念,忽视概念形成的探究和运用上。 新的教材注重对概念形成的探究和运用,并没有对概念进行书面的描述。新教材处理概念的教学很好,先让学生通过一条列的观察、分析、比较、判断等思维活动,让学生理解概念形成过程,是符合学生思维特点,但是我们教师却因此忽略了对概念总结与概括,这种无终无果的探究,学生依然对概念产生模糊的现象。新教材呢? 一、抓住事物的本质特征,揭示概念内涵。 事物都存在有共性与个性。它们是辩证统一的。我们要让学生通过从不同角度对事物进行观察、比较、分析等探究过程,学会透过现象看本质,也就是抓住共性的东西并进行归纳概括,揭示概念的内涵。学生对概念就容易理解了。 如出示不同形状,不同大小的直角三角形,让学生观察比较、分析,找出共性的东西,学生不难发现有一个角是直角的三角形叫做直角三角形。 二、抓住关键的词,层层推敲,理解概念。 小学的数学概念大多是运用词语加以描述的。所以,只要我们抓住关键的词语,层层推敲,学生就容易理解概念了。 如:梯形这个概念:只有一组对边平行的四边形叫做梯形,这个概念要使学生真正的理解,教师就要紧紧地抓住两个关键的词:(一)是四边形;(二)是只字。第一层,要让学生理解和掌握梯形不是五边形,也不是六边形,它是一个四边形。第二曾,是在四边形中必须只有一组对边平行,决不允许再有另一组对边平行。这样,学生就很清楚地理解了梯形这个概念。 三、通过反面衬托理解概念的本质一般我们都是用正面方法来揭示概念的本质,但是为了使学生更容易理解概念的本质,在正面的揭示概念的基础上再通过反面衬托更是行之有效的方法。 如教学方成这个概念时,首先,教师可过正面的揭示概念的本质:含有未知数的等式叫做方程。其次,教师可以通过反面衬托的方法,让学生辨别正误,确切的掌握方程这个概念。如 四、比较易混淆概念。 有些概念比较易混淆,学生不易区分,那么我们教师应要善于引导学生弄清易混概念的区别与联系。如倍数和公倍数,相同点都在倍数,都是数的倍数,都有无数个。不同点在公字,倍数,是一个数而讲。公倍数,那么公字就是指两个或两个以上的数。 再如:化简比和求比值,可以说方法是有联系的,但结果不同,化简比结果仍然是一个比,求比值的结果是一个数。这样学生对概念理解就清晰化,明朗化,在运用上也会游刃自如了。 总而言之,概念的教学在我们教学中占得比重较大,如果学生对概念不理解或理解的不透彻,就不能很好地掌握定律、法则、公式等。因此,我们教师要结合学生的实际,挖掘教材中的有利因素,选择行之有效的方法,帮助学生理解概念。