设Rt△ABC中,∠C=90度,BC=a,AC=b,AB=c
结论是:内切圆半径r=(a+b-c)/2
证明方法一般有两种:
方法一:
如图设内切圆圆心为O,三个切点为D、E、F,连接OD、OE
显然有OD⊥AC,OE⊥BC,OD=OE
所以四边形CDOE是正方形
所以CD=CE=r
所以AD=b-r,BE=a-r,
因为AD=AF,CE=CF
所以AF=b-r,CF=a-r
因为AF+CF=AB=r
所以b-r+a-r=r
内切圆半径r=(a+b-c)/2
即内切圆直径L=a+b-c
方法二:
如图设内切圆圆心为O,三个切点为D、E、F,连接OD、OE、OF,OA、OB、OC
显然有OD⊥AC,OE⊥BC,OF⊥AB
所以S△ABC=S△OAC+S△OBC+S△OAB
所以ab/2=br/2+ar/2+cr/2
所以r=ab/(a+b+c)
=ab(a+b-c)/(a+b+c)(a+b-c)
=ab(a+b-c)/[(a+b)^2-c^2]
因为a^2+b^2=c^2
所以内切圆半径r=(a+b-c)/2
即内切圆直径L=a+b-c
三角形内切圆半径公式:r=2S/(a+b+c)
推导:设内切圆半径为r,圆心O,连接OA、OB、OC
得到三个三角形OAB、OBC、OAC
那么,这三个三角形的边AB、BC、AC上的高均为内切圆半径r
所以:S=S△ABC=S△OAB+S△OBC+S△OAC
=(1/2)AB*r+(1/2)BC*r+(1/2)*AC*r
=(1/2)(AB+BC+AC)*r
=(1/2)(a+b+c)*r
所以,r=2S/(a+b+c).