(1)∵{bn}是等比数列,首项为4,公比为2, ∴bn=4?2n-1=2n+1, ∵数列{an}是等差数列,且对任意的n∈N*,都有a1b1+a2b2+a3b3+…+anbn=n?2n+3, ∴a1b1=24,∴a1=24 b1 =24 4 =4, a1b1+a2b2=2?25, ∴a2b2=2?25?24=48, ∴a2=48 b2 =48 23 =6, ∴d=a2-a1=6-4=2, ∴an=4+(n-1)×2=2n+2. ∴Sn=(a1+a2+a3+…+an)+(b1+b2+…+bn) =[4n+n(n?1) 2 ×2]+4(1?2n) 1?2 =n2+3n+2n+2-4.(2)①∵a1=8,a1b1+a2b2+a3b3+…+anbn=n?2n+3, ∴8b1=24,解得b1=2,设等差数列{an}的公差为d,等比数列{bn}的公比为q,则16+(8+d)?2q=2?25 2?25+(8+2d)?2q2=3?26 ,解得d=4,q=2